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Abstract 

A slab method for dynamical RHEED calculations from 
the surface of a semi-infinite crystal is developed. This 
method is based on an old idea of McRae [Surf. Sci. 
(1968), 11, 479-491], who proposed that in LEED Bloch 
waves characterizing the bulk crystal may be obtained 
by diagonalizing the scattering matrix associated with a 
repeating bulk crystal slab. However, a direct implemen- 
tation of this idea for dynamical RHEED calculation may 
result in divergent results. It is shown that this problem 
may be overcome by the method of Bethe potentials 
and the results obtained using the method of combined 
McRae and Bethe potentials are in good agreement with 
exact dynamical RHEED calculations. 

1. Introduction 

Many different methods for many-beam dynamical re- 
flection high-energy electron diffraction (RHEED) cal- 
culations have been developed in recent years (Maksym 
& Beeby, 1981; Ichimiya, 1983; Peng & Cowley, 1986; 
Smith & Lynch, 1988; Zhao, Poon & Tong, 1988; 
Meyer-Ehmsen, 1989; Peng, GjCnnes & GjCnnes, 1992; 
Peng & Whelan, 1990; Rez, 1995). But all computation 
schemes except the Bloch-wave method (Bethe, 1928; 
Collela, 1972; Ma & Marks, 1989; Peng, 1989) deal 
with RHEED from the surface of a crystal slab having 
finite thickness, and for the convenience of the follow- 
ing discussion we will call methods of this type slab 
methods. On the one hand, the slab method provides 
the most efficient and accurate means for calculating 
reflected-beam intensities. But there exists many situa- 
tions when accurate and simple expressions are needed 
for such quantities as the electron wave function within 
a semi-infinite bulk crystal, as in the case of surface 
phonon scattering (Dudarev, Peng & Whelan, 1993), 
and these expressions are not readily obtainable by the 
slab method. On the other hand, although in principle 
the Bloch-wave method is applicable for RHEED from 
the surface of a three-dimensionally periodic crystal, 
it is not easy to deal with a selvedge and to obtain 
convergent results. Methods have been proposed to 
combine the slab method and the Bloch-wave method 
(see, for example, Peng, 1994) but, nowadays, with state- 
of-the-art numerical routines of matrix diagonalization 

(NAG, 1993), this combination has yet to compete with 
the slab method both in efficiency and in accuracy. In 
this paper, we will develop a slab method that is capable 
of calculating dynamical RHEED from the surface of 
a semi-infinite crystal and show that our method is 
efficient and agrees well with the ordinary slab method. 

Our method is based on an old idea of McRae (1968), 
who first pointed out that the dynamical low-energy elec- 
tron diffraction (LEED) problem and the corresponding 
band-structure problem for the substrate may be reduced 
to a matrix eigenvalue problem involving the scattering 
matrix for a substrate layer. While this approach has been 
successfully applied for dynamical LEED calculations 
(see, for example, Stampfl, Kambe, Riley & Lynch, 
1992), a direct implementation of McRae's idea into 
dynamical RHEED theory results in divergent results 
(see §2 below). This is because in dynamical LEED 
calculations the effective pseudo-potential is much less 
localized than in the RHEED case. A small number of 
Fourier coefficients of the pseudo-potential is normally 
sufficient for the description of LEED, while in RHEED 
a larger number of Fourier coefficients are required. 
In §2, we will first discuss how McRae's idea can be 
implemented into dynamical RHEED theory and then 
show that the problem of divergence may be overcome 
by the use of the method of Bethe potentials. In §3, 
a numerical example will be given to demonstrate the 
use of the method outlined in §2 for dynamical RHEED 
calculations from the surface of a semi-infinite crystal. 

2. Theory 

It can be shown formally that all slab methods, including 
the ones by Maksym & Beeby (1981), Ichimiya (1983), 
Smith & Lynch (1986) and Peng & Whelan (1990), are 
equivalent, but differing essentially in their treatment of 
the relevant matrices. In the present paper, we use the 
method described in Peng & Whelan (1990). 

Briefly, in a periodic bulk crystal we have 

• (z + c) = (1) 

where • (z) is a super vector as given by 

[" fro! z) ) ,  (2) 
~l(z) = \- i~b(z) 
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in which ~'c(z) is the diffracted-beam amplitude associ- 
ated with the Gth rod of the reciprocal lattice and ~ is 
its surface normal derivative. The matrix M(c) appearing 
in (1) is called the scattering matrix and the constant c is 
the lattice constant along the surface-normal direction. 

For a Bloch wave b(r) in a crystal, it can be readily 
shown that both the Gth component b 6 and its surface- 
normal derivative b~ = d(bo)/dz satisfy the Bloch 
theorem 

b(J3(z + c) exn(",-,(J) ~ (j) G = ~.,t. c~,b G (Z), 
b~.J3(z + c) = exp(i@J)c)b~J)(z) (3) 

and that they are therefore both Bloch waves. We define 
a super vector b (J~ by 

) b ( j ) =  ~_ib~) • (4) 

Since (1) holds for a general wave function, it also holds 
for b (J~ defined by (4), i.e. 

bO3(z + c) = exp(iq,(J)c)b(J)(z) = M(c)b(J)(z), (5) 

in which "7 (j) is the j th eigenvalue associated with the 
j th super vector b(J)(z). 

For a dynamical RHEED calculation involving n 
reciprocal-lattice rods, the scattering matrix M is a 
2n x 2n matrix. In general, this 2n × 2n matrix will 
give a total of 2n Bloch waves, of which n propagate 
downwards into the crystal slab, and in the presence of 
absorption decay in amplitude downwards. The other 
n propagate and decay in the reverse direction. By 
introducing a 2n × 2n matrix C = (b (1), . . . ,  b (2n)) and 
a diagonal matrix T(z)  = {exp(i3,(J~z)}, we then have 

M(z) = C ' r ( z ) C - ' .  (6) 

For a crystal slab consisting of m repeating unit slabs, 
substitution of (6) into (1) gives 

'~(z + mc) = CT(mc)C-I'~(z). (7) 

Without loss of generality, we can assume that among 
the total 2n Bloch waves the first n Bloch waves 
are evanescent waves and the remaining waves are 
anti-evanescent. For a semi-infinite crystal, these anti- 
evanescent Bloch waves are not physically allowed and 
must be discarded. Assmning that the interface between 
the selvedge and the bulk crystal is at z = Zs and that 
the scattering matrix associated with the selvedge is M s, 
we then have for a crystal slab consisting of m repeating 
unit slabs 

• (z + mc) = c"r(mc)C-lMs~(O) 

= C (  {exp(i@i)mc)} {exp(iT(i+n)mc)} ) 

{ ) 
C-IMsk{kGz(6GO- TO.G) } ' x (8) 

in which T¢a is the reflected-beam amplitude associated 
with the Gth reciprocal-lattice rod. 

For a semi-infinite crystal, since all physically allowed 
quantities must have a finite amplitude, the lower half of 
the column vector C - 1 M s ~  ' (0) on the right-hand side of 
(8) must vanish. In terms of the two lower submatrices 
M~I and M22 of the matrix M ~ = C-1Ms and the 
surface reflected-beam-amplitude vector {~6} ,  we can 
write the condition as 

which gives 

(9) 

+ 

(10) 
To utilize (10) for dynamical RHEED calculations 

from the surface of a semi-infinite crystal, the scattering 
matrix M(c) associated with a repeating unit slab must 
first be calculated and then diagonalized by a similarity 
transformation as in (6). However, to achieve a conver- 
gent dynamical RHEED calculation, some evanescent 
beams must be included. The inclusion of evanescent 
beams, in particular positive higher-order Laue-zone 
(HOLZ) beams lying outside the Ewald sphere, usually 
gives rise to a divergent scattering matrix M(c) for 
a repeating unit slab, putting an upper limit on the 
number of evanescent beams that may be included in 
the calculation and consequently on the accuracy of the 
calculation. 

The situation can be improved to a certain extent if 
the repeating unit slab of the substrate crystal consists 
of an assembly of identical layers of atoms, such as a 
monolayer of atoms, each having a thickness c and a 
relative shift R t with respect to each other. The scattering 
matrix associated with the ith layer is then related to the 
( i -  1)th layer by the relation 

M i - Q - I M i _ I Q  -- ( Q - l ) i - l M 0 ( Q ) i - l ,  (11) 

in which the matrix Q is a diagonal matrix with {Q}c = 
e x p ( i G .  R t )  , and M 0 is the scattering matrix associated 
with the first layer. Following the general relation (1), 
we have 

~(Z + mc) = MmI,~[Z "q- (m-- 1)c] 

= MmMm_ 1 . . .  M0~I'(z ) 

= (Q-I)m(QMo)m,~(z). (12) 

By a similarity transformation of the matrix Q M  0, 

Q M  o = C T C  - l ,  (13) 

we obtain 

~(z + mc) = (Q-')mCT(mc)C-I~(z).  (14) 
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This expression is similar to (7) and, following a similar 
argument to that leading to (10), we obtain an identical 
expression for the reflected-beam-amplitude vector (10). 
Since the thickness of a layer of atoms is smaller 
than that of a repeating unit slab, the validity of the 
above procedure is improved compared with that using 
a repeating unit slab. 

For a selvedge with a simple structure, the scattering 
matrix M s associated with the surface selvedge can be 
simple and convergent if the scattering matrix associated 
with the bulk slab M(c) is convergent. However, for 
a complicated surface structure, the thickness of the 
selvedge could be larger than that of a bulk slab and 
its scattering matrix M s could be divergent even if 
that associated with the bulk slab is convergent. In this 
case we can propagate a so-called R matrix (Ichimiya, 
1983; Zhao et al., 1988) rather than the scattering matrix 
through the selvedge. Assuming that the whole crystal 
system consists of a total of m bulk slabs and the 
selvedge interface is at z = z s, we have then the 
following expression for relating the super vector at the 
bottom of the whole crystal system to that at the selvedge 
interface 

• (z s + mc) = CT(mc)C- l f f~ (Zs ) .  (15) 

By writing 

C -I  = C / , (16) 
= C21 C22 

and following the same procedure leading to (9), we 
obtain 

! • ! 
C21 { ~ G ( Z s ) )  + C22{--l~b(Zs) ) = 0, (17) 

which gives the R matrix at the selvedge interface, 

R -(C~2)  -x ' = (C21), (18) 

that relates the surface-normal derivative of the wave- 
function vector {k~ } and the wave-function vector {~c } 

{ - i ~ ( z ) }  = R{k~(z)}. (19) 

This R matrix can then be propagated upwards to 
the surface to give the required surface reflected-beam 
amplitudes (Peng, 1994). 

When the solid is composed of moderately strong 
scattering atoms, the scattering matrix associated with 
even a monolayer of atoms can be divergent. The prob- 
lem arises from the inclusion of the evanescent beams 
lying outside the Ewald sphere. It has now been well 
established that, although each of these strong evanes- 
cent waves contributes little to the resulting RHEED 
rocking curves, in general their collective contribution 
is not negligible. 

In principle, the problem of dynamical RHEED in- 
volves an infinite number of rods of the reciprocal 
lattice. However, since the scattering power of the crystal 
is effectively band-width limited, only a finite set of 
reciprocal-lattice rods, say N rods, are needed for the 
description of the main features of RHEED. Artificially, 
we may divide the N rods of the reciprocal lattice 
into two groups, one referring to the strong beams and 
the other to the weak beams, based on the quantity 
/-2 = K e _ [K/+ HIe associated with the beams, where 
K is the incident electron wave vector corrected for 
the mean inner potential and the subscript t denotes 
the tangential component of the wave vector. For weak 
beams, we have the inequality IF 2 - K2I >> IUmax[, 
where I Umax[ is the maximum of all I u. .I  for weak 
beams, while for strong beams this inequality is not 
satisfied. If both groups of beams are treated fully in 
the dynamical RHEED theory, then, roughly speaking, 
for weak beams there exists a one-to-one correspondence 
between Bloch waves and the reciprocal-lattice rods, and 
for these Bloch waves we have approximately ,if(i)2 ,x, 
/-2. For evanescent beams, we have ,if(i) r~ +i[/-Hi" From 
(8), it is clear that the scattering matrix M associated 
with a crystal slab then contains terms of the form 
exp(I/-HIc). For a given value of the slab thickness 
c, we then have an upper limit /-max on I/-.1. i.e. all 
weak beams with Ir.I > /"max cannot be included in 
the calculation. Extensive computations confirmed that 
the inclusion of beams with I/"cl </"max is usually not 
sufficient to produce convergent results. 

At this stage, we note that, in the method of Bethe 
potentials (Bethe, 1928; Ichimiya, 1988; Peng, Dudarev 
& Whelan, 1996), beams with sufficiently large values 
of [/"HI may be treated as a perturbation. Justification for 
the use of the Bethe potential method is that for an N-rod 
RHEED case, among the total of 2N Bloch waves only a 
smaller set of 2n (n < N) Bloch waves are important and 
have appreciable excitation amplitudes. Although all N 
rods of the reciprocal lattice are needed to give correct 
eigenvalues and eigenvectors for these 2n important 
Bloch waves, only n reciprocal-lattice rods need to be 
treated fully, while the effect of the remaining N -  n rods 
may be taken into account as a perturbation. We have 
found that the method of Bethe potentials works well in 
this respect. In the next section, we will show that the 
upper limit imposed on I/-.1 for evanescent beams by the 
condition that the scattering matrix M must be finite and 
the low limit set by the Bethe approximation overlap. 
The divergence problem encountered in diagonalizing 
the scattering matrix M is then solved by the use of the 
Bethe potential method. 

3. Numerical  results 

In this section, we will present some results for the Ag 
(001) surface. The high-energy electrons are incident on 
the surface along the [110] azimuth. For convenience, 



474 DYNAMICAL RHEED CALCULATIONS FROM A SEMI-INFINITE CRYSTAL 

we will use an index system that the conventional 
[110] beam azimuth corresponds to [10]. Using this 
indexing notation, the zero-order Laue-zone (ZOLZ) 
beams (n, ~, 0) can be simply written as (0, n) and the 
HOLZ beams (n + m, ~ + m, 0), where m refers to the 
order of the HOLZ zones, is written as (m, n). The 
primary-beam energy used in the following calculation 
is 20 keV and the complex atomic scattering factors are 
taken from Dudarev, Peng & Whelan (1995). 

Shown in Fig. 1 is a calculated kinematic RHEED 
pattern using CERIUS 2 of MSI. While it is well known 
that for RHEED geometry the kinematic theory does not 
give the right intensity, this kinematic diffraction pattern 
nevertheless gives the correct diffraction geometry. The 
two diffraction rings consist of diffraction spots of the 
type (0, n) and (1, n) are ZOLZ and first negative HOLZ 
zones, respectively, and all positive HOLZ beams are 
evanescent and not visible in the RHEED pattern. 

Shown in Fig. 2 are dynamical RHEED rocking 
curves for the specular (00) and (01) beams. The curve 
with the key '16 rod calculation' was calculated using 
nine ZOLZ beams (0,0), (0 ,+1) ,  (0 ,+2) ,  (0 ,+3) ,  
(0 ,+4)  and seven HOLZ beams ( -1 ,  0), (-1,-4-1), 
( - 1 ,  +2),  (-1,- t-3) and using (10). When higher-order 
ZOLZ beams and other HOLZ beams are included, the 
scattering matrix M(c) becomes divergent. However, the 
curve with the key 'full 33 rod calculation' in the figure 
shows clearly that the 16-rod calculation is not conver- 
gent. This 33-rod calculation uses the same 16 rods of 
the reciprocal lattice as in the earlier curve, but includes 
an additional 17 HOLZ beams and uses the conventional 
RHEED slab method (Peng & Whelan, 1990) rather than 
the method discussed in §2. These additional beams are 
( - 2 , 0 ) ,  ( - 2 , + 1 ) ,  ( - 2 , + 2 ) ,  (1,0), (1 ,+1) ,  (1 ,±2) ,  
(1, ±3),  (2,0), (2, ±1),  (2,4-2). The third curve in the 
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Fig. 1. Kinematic RHEED pattern calculated for 20 keN primary-beam 
energy and an Ag (001) surface for the [110] beam azimuth. 

figure with the key '16 rod + Bethe potentials' was 
calculated using the basic set of 16 rods as in other 
curves, and the remaining 21 rods were treated using 
the method of Bethe potentials (see Peng et al., 1996, for 
details). Fig. 2 shows that, while the 16-rod calculation 
differs substantially from the full 33-rod calculation, the 
use of Bethe potentials produces almost perfect results. 
To be more quantitative, we have calculated a so-called 
R factor defined as 

R A B  - -  ~ IIA - -  4 I / I A ,  (20) 
i 

in which I a and 18 denote intensities of curves A and 
B, and the index i refers to the ith data point. For 
the specular (00) beam, R = 0.53 between curves of 
the full 33-rod calculation and the 16-rod calculation, 
R = 0.0085 between the full 33-rod calculation and 
the 16-rod curve with Bethe potentials. For the (01) 
rod, the values for the two cases are 0.90 and 0.015, 
respectively. These figures demonstrate clearly that the 
use of Bethe potentials greatly improves the accuracy of 
the approximate calculation using only a limited set of 
beams and equation (10). 

4 .  C o n c l u s i o n s  

In this paper, a slab method is developed for calculating 
dynamical RHEED from the surface of a semi-infinite 
crystal. This method combines the usual slab method 
of RHEED with the method of Bethe potentials. Our 
results show that this method is efficient and convergent 
and they agree well with those calculated using the 
conventional slab method. 

This work was supported by the Chinese Academy 
of Sciences and National Natural Science Foundation 
of China (LMP), the Engineering and Physical Science 
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Fig. 2. Dynamical RHEED rocking curves calculated from an Ag (100) 
surface. The calculations are made for 20 keV primary-beam energy 
and 293 K, and the two graphs are for the specular (00) beam and 
a side (01) beam. 
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